Proximal methods for nonsmooth and nonconvex fractional programs: when sparse optimization meets fractional programs

Guoyin Li (The University of New South Wales)

26-May-2021, 07:00-08:00 (5 years ago)

Abstract: Nonsmooth and nonconvex fractional programs are ubiquitous and also highly challenging. It includes the composite optimization problems studied extensively lately, and encompasses many important modern optimization problems arising from diverse areas such as the recent proposed scale invariant sparse signal reconstruction problem in signal processing, the robust Sharpe ratio optimization problems in finance and the sparse generalized eigenvalue problem in discrimination analysis. In this talk, we will introduce extrapolated proximal methods for solving nonsmooth and nonconvex fractional programs and analyse their convergence behaviour. Interestingly, we will show that the proposed algorithm exhibits linear convergence for sparse generalized eigenvalue problem with either cardinality regularization or sparsity constraints. This is achieved by identifying the explicit desingularization function of the Kurdyka-Lojasiewicz inequality for the merit function of the fractional optimization models. Finally, if time permits, we will present some preliminary encouraging numerical results for the proposed methods for sparse signal reconstruction and sparse Fisher discriminant analysis.

optimization and control

Audience: researchers in the topic


Variational Analysis and Optimisation Webinar

Series comments: Register on www.mocao.org/va-webinar/ to receive information about the zoom connection.

Organizers: Hoa Bui*, Matthew Tam*, Minh Dao, Alex Kruger, Vera Roshchina*, Guoyin Li
*contact for this listing

Export talk to